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In numerical simulations of power systems, discrete models and mesh-free models are very 
often used simultaneously, for example, in particle-in-cell (PIG) codes. The aim of this paper 
is to introduce new techniques for interpolation as well as for localization in irregular four- 
point meshes. These algorithms extend the existing methods for regular grids to grids con- 
sisting of non-equidistant convex four-point meshes. They were developed in order to obtain 
short CPU times and possible vectorization. c 1988 Academic Press, Inc. 

I. INTRODUCTION 

In order to describe the behavior of charged particles in electro-magnetis fields 
with a PIC code, a grid is introduced in order to compute the forces acting on the 
particles. The fields are determined at the mesh points of this grid, whereas the 
movement of the particles takes place in a mesh-free model. The fields at the 
particle position are determined by an interpolation from the grid (discrete model) 
onto the particle positions (continuous model). The particles are pushed by means 
of the forces acting upon them. In order to compute new fields at the mesh points in 
a self-consistent manner, the particle information must be assigned to the grid. In 
Fig. 1 such a time-step is outlined. As long as the used grid consists of equidistant 
cells, the applied algorithms for interpolation and localization are based on simple 
models [4]. 

Within the past few years, however, irregular grids such as the boundary-f&e 
coordinates have been developed in order to treat more complicated geome~~e$, 
especially with curved boundaries [2, 61. The cells originating from this approach 
are not equidistant, but in general arbitrary convex quadrangles. In particular, t 
existing methods can no longer be applied directly. In the following, new algo~t~ms 
for interpolation as well as for localization will be introduced. 

* The work described in this report is being carried out as part of the German SUPRENUM Super- 
computer Project and is being funded by the Federal Ministry for Research and Technology (BMFT), 
P.R. of Germany, under Grant ITR8502K/4. The author assumes full responsibility for the contents of 

this report. 
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FIGURE I 

II. INTERPOLATION 

The Area- Weighting Method 

Consider a particle in a certain cell. Usually only the information given at the 
four corners of the cell is taken into account for calculation of the force at the 
particle position. If the cell is rectangular, mostly the area-weighting method [3, 51 
is applied for interpolation of the functional values foe, fro, fir, for (see Fig. 2) onto 
the particle position P. 

Let us suppose for the sake of simplicity that the rectangular cell is the unit 
square. Then the functional value fin point P(a, , az) is calculated as the sum of the 
weighted functional values & (i, j = 0, 1) : f = g,foo + g,,f,, + g,,fr, + g,,f,, , 
where 

g00=(1-al)U-a2) gll = a1 a2 
gIo=aAl-a2) go1 = (1 - alI az. 

(1) 

The area-weighting method can easily be illustrated, as Fig. 3 shows. The areas 
A Ato, AI,> A,, correspond to the weights g,, glo, gzl, go,. This method 
pziesses the following properties: 

(Pl) If point P lies on the edge of the cell, i.e., on a line PijPkl 
(i, j, k, 1 E (0, 1 }, Ii -jl + Ik - II = l), only g, and gk/ are taken into account for the 
evaluation of the value in P. (This property assures continuity of the weights when 
a particle changes from one cell to the next.) 

(P2) 0 d g, < 1 (i, j= 0, 1) and g, + glo + g,, + go, = 1 (physical quantities 
like charge and momentum are conserved). 
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(P3) Bilinear functions f: R* + R! with 

f(x, y ) = ax + by + cxy + d, a, b, c, dE R, 

are approximated exactly in [0, l] x [0, 11. 

Property P3 means that, if the values of a bilinear function are given on the 
corners of the unit square, and these values are interpolated onto a point inside the 
unit square, this point is assigned the exact value. 

The area-weighting method cannot be applied in arbitrary convex four-point 
meshes, and therefore generalization is needed. 

Formulation of the Problem for Generalization 

We sum up the problem as follows: Given is a convex quadrangle G (see Fi 
with the corners (x,, y,,), (xIO, yIO), (x,,, yI1), and (x,,, yol), and the unit square 
I*== [O, l] x [O, 11. 

Needed is a function F that assigns values a,, a2 E CO, l] to every 
lx, Y)EG: 

F: G + I*, (x, Y) -+ F(x, Y) = (a,, 4 

with the property that for all linear functions 

f:FP+R with f(x, y) = ax + by + c (a, b, c E RI 

it holds that 

f(x, y)=(l -a,)(1 -~*)fh,, Ycd+%(l -~*)f~x,,, Ylo)+~,~,f(x,,> Y,,) 
+ (1 -aI) ~2fbbl? Y,,) for all (x, v) E G. (2) 

a, b, c E II% being arbitrary, Eq. (2) assures exact approximation of every hnear 
function. Restriction to linear functions is necessary, because--contrary to the inter- 
polation in rectangular cells-arbitrary bilinear functions cannot be approximated 
exactly. Counterexamples can be constructed easily. 

Necessary Conditions for Generalization 

In order to find necessary conditions for function F, we insert an arbitrary linear 
function 

f(x, y)=ax+by+c (a,b,cE@) 

a b 

FIGURE 4 
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into formula (2): 

ax+by+c= (1 -%I(1 --“z)(a&3+by,+c)+cr,(l --a,)(axi~+by,,+c) 

+ al~z(~xll+ by11 + c) + (1 -a,) ~*(uxo1+ by01 + c). 

The terms are arranged with respect to a, b, and c, and the coefficients are com- 
pared. Because this equation is to be satisfied for arbitrary linear functions, and, 
hence, for every a, b, c E R, we obtain 

a, a2(x11- x10 - x01 + %o) + %(X10 - x00) + a2(xo1- xcd = x - x00 

“1a2(Y11- YlO - YOl + Yoo) + %(YlO - Yod + @,(YOl - YoiJ) = Y - yoo. 

As can be seen from this system of equations, it is invariant to a translation T by 
the vector (x,, yoo ). Thus, without loss of generality, we can assume that 
(xoo, yoo) = (0,O). The resulting system of equations 

is invariant to the multiplication by an invertible matrix A. If we define 

and perform a coordinate transformation, 

(;):= A(;), 
we obtain a new system of equations 

Geometrically, this transformation together with the translation T corresponds to a 
mapping of G into a quadrangle G” of form in Fig. 4b. 

Hence, a1 and a2 can be determined by the nonlinear system of equations 

a,(1 + a2(xsl - 1)) = xS 

a,(1 + al(.% - 1)) = Y’. 

Explicit Formulae 

The solution (a,, aJ of the system can be calculated explicitly by the formulae 

a =-P+(P2+4)1’2 for xs #l YS 
2 (4-l) 11 7 a2=1+x”(y;1-l) 

for x;r=l 
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and 

XS 

E1=l+cl*(x;l-l) 

withp=$(l+x”(y”,,- l)-y”(x”,,--1)) and ~~=y”(x”,,--1). 

Discussion. It is easy to show that 

($(X> Y), ~z(X, Y)) E I2 

and function F: G -+ 12, defined by 

for all (x, y) E 6, 

.F(x, Y) := (a,(~, Y), &> Y)), 

satisfies formula (2) for arbitrary linear functions. Besides, F is continuous (also 
with respect to x;i, y;r ) and properties Pl and P2 of the area-weighting method are 
satisfied. Furthermore, in case G” is already the unit square, i.e., xsl = 1 and y;r = 1, 
we have cur = xS and tlz = y”. This means that the area-weighting method is included 
as a special case. 

III. LOCALIZATION 

The Problem 

We consider a boundary-fitted grid consisting of arbitrary convex four-point 
meshes. In order to interpolate the fields from the grid point onto the particle 
position inside a cell and in order to assign the particle quantities to the mesh 
points, it is necessary to know the cell the particle is located in as well as the par- 
ticle’s location within the cell. 

Noiation. In order to identify cells each grid point is assigned the addresses in 
x- and y-directions as a pair of numbers (1,J) (see Fig. 5). For a given point 
P(x, y) we define the grid-weights (a,, a2) E R2 in such a way that 

(A.0 = (INT(al), INT(d), 

where INT(cr) stands for the integers part of 01, represents the address of the left 

(1.3) (2.3) (3.3) 

(1.2) (3.2) 

(1.1) (2.1) (3.1) 

FIGURE 5 
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lower corner of the cell the particle is in. The weights g,, g,,, g,, , g,, needed for 
the interpolation are determined by 

g,=(l-(a,-Z))(l-(a,-J)) g11= (El - O(G -4 

5710 = (Ml - Nl- (a2 -J)) go1 = (I- (a1 - I))(% - 0 

The integer fraction of (c~i, c+) hence indicates the address and the decimal fraction 
indicates the location within the cell. We term (c~i - 1, a2 - J) the cell-weights. 

EXISTING METHOD. Let us consider first a rectangular grid (i.e., a grid where the 
cells are identical rectangles). In this case the addresses and cell-weights can be 
computed very conveniently; node (I, J) has the coordinates 

where (x0, yo) are the coordinates of the left lower corner point of the grid and Ax 
and dy are the mesh sizes in x- and y-directions, respectively. The address of the 
cell a particle with the coordinates (x, y) is located in, can be computed by 

Z= INT((x - x,)/Ax) + 1, J= INT((y- yoY4) + 1, (4) 

and the cell-weights are given by 

y1 =(x-xo)/Ax+ l-1, Y*=(Y-Yo)/4+1-J. (5) 

In boundary-fitted grids this method cannot be applied anymore. We consider the 
fact that a particle is in cell (I, J), iff it is above the lower, left from the right, below 
the upper, and right from the left cell boundary. Hence, there are at least four 
IF-clauses necessary for a direct search-algorithm, which is reflected in a very large 
CPU time. Moreover, such an algorithm is not efficiently vectorizable. 

Alternative Localization 
We choose a finely meshed rectangular grid which is laid over the boundary- 

fitted grid (see Fig. 7), and we localize the particles first in the rectangular grid. In 
doing this, we profit from the rapidity of localization in rectangular grids. In order 
to obtain a relationship between both grids, each grid point of the rectangular grid 
is localized in a preparatory phase with respect to the boundary-fitted grid and 
provided with grid-weights. This can be done, e.g., with the time-consuming search- 
algorithm mentioned above and by the interpolation already described. 

Then the particles are localized and weighted in the rectangular grid using 
the formulae (4) and (5). In order to obtain the grid-weights with respect to the 
boundary-fitted grid, the addresses and cell-weights of the four corners of the 
surrounding rectangular cell are interpolated onto the particle position. This 
procedure is sketched in Fig. 6. 
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FIGURE 6 

For the interpolation of the grid-weights from the corners of the rectangular cell 
onto the particle position the area-weighting method can be used. Thus the grid- 
weights at the particle position are given by 

where y1 = (x -x,)/Ax + 1 - 1, y2 = (y - y,)/dy + l-J, with (1, J) assumed to be 
the address of the equidistant cell the particle is located in, and Gi,‘j, G{,$’ the grid- 
weights in the x- and y-directions of node (1, J) of the rectangular grid with respect 
to the boundary-fitted grid. 

Discussion. Since the grid-weights of the corner points of the rectangular cells 
are interpolated onto the particle position, an error is produced in the grid-weig 
at that position. Even if the method of interpolation presented in Section 2 is used, 
this causes loss of the property that linear functions are approximated exactly. If, 
however, the cells in the boundary-fitted grid are identical rectangles, vocalization 
including computation of the cell-weights is precise. Thus, in this special case the 
algorithm coincides with exact localization and application of the area-weighting 
method. 

Let us consider the case that the cell-weights of the nodes of the rectangular grid 
have been determined using the method of interpolation in Section 2. We analyze 
the error in the cell-weights generated by the interpolation of the g~d~we~ghts onto 
the particle position. 

(a) If the entire rectangular cell lies in one boundary-fitted cell, quadratic 
convergence with respect to the mesh size of the equidistant grid can be shown (by 
developing the functions for calculating the grid-weights at the corner points into a 
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Taylor series around the particle position): Let F,, F2 be the exact grid-weights at 
the particle position, and cc i, a2 the grid-weights computed by formula (6). Then 

jai- Fil 6 C, Ax2 + C,Ay2 + C, Ax Ay (i= 1,2), 

where Ax and .4y are the mesh-sizes of the equidistant grid in x- and y-directions, 
respectively, and C,, C,, C, > 0 only depend upon the boundary-fitted grid. 

(b) If the corners of the rectangular cell lie in more than one boundary-fitted 
cell, linear convergence can still be shown: 

3C1, C,>O: jai-Fij 6C, Ax+C2Ay (i = 1, 2). 

This raises the question how an error in the grid-weights gets visible in inter- 
polation if values fi,. (i, j= 0, 1) are to be interpolated from the corners of a 
boundary-fitted cell onto the particle position. Let us assume that instead of the 
exact cell-weights a, - 1, a2 - J wrong cell-weights a1 - I+ Ed, a2 - J+ e2 
(O<a,-I+~1<1,0<a2- J+ s2 < 1) are used. Then an upper bound for the error 
in the functional value can be given, 

I4!fI G (1~1 + l~2l)f*, 

where f is the value determined by the exact cell-weights, Af is the difference 
between the exact and the wrong value, and f* is the maximum difference of the 
functional values at two neighboring corners of the boundary-fitted cell, 

f * = maxi If(x,, vii) -f(x kl, y,dI : i,j, ,k, ZE (0, I}, Ii-A + P-4 = I>. 

Remarks and Modifi:cations. The drawback of the method described above lies 
in the fact that by an error in the grid-weights the address of an adjacent cell may 
be found. By reasons of continuity it can be shown that in such a case the 
numerical error has no effect upon the simulation, unless this happens in the 
vicinity of the boundary. In this area there are several possibilities of taking action: 

(a) Fitted rectangular grids. The rectangular grid can be constructed in such 
a manner that lines of.this grid coincide with critical lines of the boundary-fitted 
grid (see Fig. 7). Due to the fact that an error in the addresses can only occur in the 

FIGURE 7 
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rectangular cell containing the particle lies in more than one boundary-~tted cell, 
the shaded area becomes uncritical. 

(b) If a particle is close to the boundary (within a specified tolerance) one 
can check (e.g., with the search-algorithm described above), whether it is insi 
outside the grid. Although such an additional test cannot be vectorized, the increase 
on CPU time is not too important, because the test has to be performed for few 
particles only. 

As the error in the grid-weights may be explained by the fact that a nonlinear 
function (the grid-weights in the corners) is interpolated linearly (onto the particle 
position), one can try to replace the function used for linear interpolation by a 
function corresponding to the type of function to be interpolated (cf. formula (3)). 

In our numerical experiments we chose functions with free parameters, which 
were determined by the condition that the grid-weights in the center of each rec- 
tangular cell were to be interpolated exactly. In this way we achieved a ~o~sider~bl~ 
decrease in the mean error as well as in the maximum error. 

IV. RESULTS 

(1) In order to measure the numerical accuracy of the interpolation scheme 
of Section 2, a simulation was performed in a quarter-circle-like domain (see Fig. 
with 20 x 10 grid points. We assumed a monopolar flow of electrons according to 
the Child-Langmuir law [ 1 ] and followed the motion of an ion passing through 
the anode-cathode gap. We compared the numerically computed energy after about 
3000 time-steps with the analytic one and obtained a deviation of 0.02%. Eve 
when applying the localization of Section 3, the deviation was less than 0.03 %, 
which lies in the area of rounding errors. 

FIGURE 8 
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Electrons Ions 

FIGURE 9 

(2) A typical run of a PIC code in a high-voltage diode with 11,307 electrons 
and 10,153 ions was taken as the example (see Fig. 9) [7]. The number of mesh 
points of the boundary-fitted grid was 21 x 45, the rectangular grid was 4 and 8 
times finer than the boundary-fitted grid. The particles close to the boundary where 
checked additionally (“inside-outside”). The errors in the grid-weights were com- 
puted by means of the I,-norm. “Linear” stands for the area-weighting method used 
for the interpolation of the grid-weights from the corners to the particle position 
and “SQRT” for the nonlinear function applied in that position. The numerical 
computations. were made on a Siemens 7890M and the CPU times are in 
milliseconds. 

For the comparison of the different methods we use the notation 

Aa=Z(la,-P,( + lc(z-F~I)/n is the mean error in the grid-weights, 

~%BX =max(lcll--Frl + lclz-FF21) is the maximum error in the grid-weights, 

n is the number of particles inside the grid, and when computing .Z and max only 
those particles were considered. 

Fineness of the 
rectangular grid ACr 

Linear With SQRT Old 
Method 

A’%, CPU AU &llU CPU CPU 

4 Small O.llE-2 0.15 174 0.59E-3 0.63E-1 293 
Fitted O.lOE-2 0.83E-1 181 0.53E-3 0.72E-1 303 8 Small 0.37E-3 0.11 171 0.22E-3 0.80E-1 297 479 

Fitted 0.33E-3 0.51E-1 180 0.19E-3 O.lSE-1 306 
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V. CONCLUSIONS 

The methods presented are basic elements for the transition between discrete and 
mesh-free models. Under the given constraints interpolation allows an accurate 
determination of the functional value. Although localization in an individuai case 
may assign a neighboring cell to a particle, this error does not impair the 
simulation as a whole. The methods are vectorizable and even in the scalar case 
they are associated with substantial saving in computer time. 
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